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Abstract 24 

Memory transforms over time, gradually becoming less idiosyncratic and more gist-like. 25 

While sleep contributes to memory transformation, how different sleep stages and EEG 26 

activity influence memory transformation is far from clear. Applying representational 27 

similarity analysis to electroencephalogram (EEG) recordings, we examined memory 28 

representational transformation at both the idiosyncratic “item-level” and the generic 29 

“category-level”. Our findings revealed that after an overnight sleep, item-level neural 30 

representations for post-sleep remembered items were abolished. In contrast, category-31 

level representations remained prominent, but they became distinctive from pre-sleep. 32 

Across participants, more rapid eye movement (REM) sleep relative to slow-wave sleep 33 

(SWS) was associated with reduced item-level neural representational strength, 34 

increased category-level representational strength, as well as the decreased item-level 35 

representational similarity between pre-sleep learning and post-sleep retrieval sessions. 36 

Moreover, the theta and beta EEG power during REM sleep, and delta power during 37 

SWS differentially supported these representational transformations. These findings 38 

suggest that post-learning REM sleep and SWS play differential roles in supporting 39 

overnight memory transformation.  40 

Keywords: REM sleep, SWS, memory transformation, representational similarity 41 

analysis, episodic memory 42 

 43 

  44 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606592doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606592


3 
 

Introduction 45 

Sleep consolidates and transforms newly acquired information, making it long-lasting for 46 

future use (Diekelmann & Born, 2010; Rasch & Born, 2013; Stickgold, 2005). While 47 

extensive evidence has established the sleep’s benefits in consolidating episodic 48 

memory (for meta-analysis see Berres & Erdfelder, 2021), how sleep transforms 49 

memory remains unclear. Theoretical models propose that sleep transforms 50 

idiosyncratic memory episodes into generalized gist or schema (Dudai et al., 2015; 51 

Inostroza & Born, 2013; Landmann et al., 2014; Nadel et al., 2012; Payne, 2011; 52 

Stickgold & Walker, 2013; Xue, 2022). This sleep-mediated memory transformation is 53 

largely inferred from pre- vs. post-sleep behavioral changes in memory tests implicating 54 

integration, generalization, and schematization (Barry et al., 2019; Ellenbogen et al., 55 

2007; Friedrich et al., 2015; Lewis & Durrant, 2011; Payne et al., 2009). Despite these 56 

promising findings, behavioral measurements may fall short in characterizing the 57 

complexity and fidelity of memory representations (Heinen et al., 2024; Xue, 2022). 58 

Therefore, it is desirable to obtain direct neural evidence delineating the sleep-mediate 59 

memory representational transformation.  60 

We aim to address this question by leveraging the analytical power of 61 

Representational similarity analysis (RSA) to examine memory representations at 62 

different levels in the human brain (Diedrichsen & Kriegeskorte, 2017). Specifically, RSA 63 

can decompose neural representations of individual items into item- and category-level 64 

representations (Lee et al., 2019; Ritchey et al., 2013; Wu & Fuentemilla, 2023). Item-65 

level representations capture neural representations unique to specific stimuli (Kuhl & 66 

Chun, 2014), while category-level representations capture neural patterns shared across 67 

stimuli within semantic categories (Koutstaal et al., 2001; Naspi et al., 2021). Applying 68 

the RSA to EEG recordings, we examined both item- and category-level representations 69 

within pre-sleep learning and post-sleep retrieval sessions, respectively (i.e., within-70 

session RSA), and item-/category-level representational similarity between pre- and 71 

post-sleep sessions (i.e., cross-session RSA). We hypothesize that sleep facilitates 72 

memory transformation and gist-extraction among post-sleep remembered items. 73 

Specifically, for within-session RSA, we expected that both item- and category-level 74 
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representations would be present in the pre-sleep learning session (Liu et al., 2021). 75 

Following sleep, we hypothesized that the item-level representation would be diminished 76 

and even abolished in the post-sleep retrieval session (i.e., reduced item specificity) 77 

(Feld & Born, 2017). In contrast, we anticipated that category-level representation shall 78 

persist and remain identifiable in the post-sleep retrieval session (i.e., enduring gist-like 79 

information). Moreover, we expected that the cross-session RSA will show lower item-80 

level and/or category-level neural representational similarities as compared to the within-81 

session RSA, as a result of memory representational transformation (Fig. 1A-B).  82 

More critically, how different sleep stages, particularly the SWS and REM sleep, 83 

interactively contribute to memory representational transformation remains controversial. 84 

One perspective suggests that these two sleep stages may complement each other in 85 

optimizing memory consolidation and transformation (Brodt et al., 2023; Diekelmann & 86 

Born, 2010; Giuditta et al., 1995; Inostroza & Born, 2013). Specifically, during SWS, 87 

repeated memory reactivation would integrate newly encoded memories into pre-88 

existing memory schema, transforming hippocampal-dependent memory into more 89 

neocortex-dependent gist-like representations. Subsequent REM sleep would further 90 

stabilize these transformed representations via synaptic consolidation. Supporting this 91 

hypothesis, animal studies suggest that SWS-initiated cortical plasticity for memory 92 

consolidation is reinforced by the following REM sleep episode (Miyawaki & Diba, 2016; 93 

Ribeiro et al., 2007). Moreover, human studies showed that the product of the durations 94 

of SWS and REM sleep (SWS * REM), reflecting their complementary roles, explains 95 

overnight memory consolidation (Hu et al., 2015; Mednick et al., 2003; Stickgold et al., 96 

2000). If SWS and REM complement each other in memory transformation, then a 97 

higher SWS * REM should be associated with greater overnight memory 98 

representational transformation (Fig. 1C). 99 

An alternative perspective posits that SWS and REM sleep play differential roles in 100 

sleep-mediated memory transformation (MacDonald & Cote, 2021; Payne, 2011). 101 

According to this view, SWS stabilizes memory representations in their original formats, 102 

while REM sleep primarily refines and transforms them into schema-like formats. 103 

Supporting this perspective, research has shown that REM sleep duration is positively 104 
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associated with schema-conformant memory consolidation and creative problem-105 

solving, while SWS duration showed an opposite trend (Cai et al., 2009; Durrant et al., 106 

2015). Consistent with this idea, a recent study showed that greater memory distortion 107 

or modification occurs after REM-rich sleep, while stabilization of the undistorted original 108 

memory occurs after SWS-rich sleep (Kaida et al., 2023). If this perspective holds true, a 109 

higher REM to SWS duration ratio (i.e., REM/SWS) should be associated with greater 110 

memory representational transformation (Fig. 1C).  111 

Here, combining overnight sleep EEG recordings with RSA, we examined item- and 112 

category-level memory representational transformation across sleep. Our results 113 

revealed substantial memory representational transformation for post-sleep 114 

remembered items: while pre-sleep memory representations contained both item-level 115 

and category-level content, post-sleep memory representations were predominantly 116 

categorical. More importantly, a higher REM/SWS duration ratio was associated with 117 

reduced item-level representational strength, increased category-level representational 118 

strength, and reduced item-level cross-session similarity. Thus, our findings support the 119 

differential roles of SWS and REM in memory representational transformation.  120 

 121 

Results 122 

A total of 35 participants (26 females, mean age ± SD: 22 ± 2.79) were included in the 123 

analysis. Participants completed three major task sessions: pre-sleep learning, overnight 124 

sleep, and post-sleep mental retrieval tests (see Fig. 1 and Methods). During pre-sleep 125 

learning, participants learned 96 unique word-picture pairs, with each repeated three 126 

times. After a distraction task, participants were tested for their memory on half of the 127 

learning pairs. Subsequently, participants went to nocturnal sleep, during which targeted 128 

memory reactivation (TMR) was performed during SWS. In the post-sleep mental 129 

retrieval session, participants closed their eyes to mentally recall associated pictures as 130 

vividly as possible, prompted by auditory cues. Similar to the pre-sleep learning, each 131 

word-picture pair was mentally retrieved three times. Immediately after the mental 132 

retrieval task, participants were asked to write down the picture content, promoted by 133 

individual printed cue words. Participants showed an average accuracy rate of 0.40 (SD: 134 
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0.18) in this task, serving as the post-sleep memory retrieval performance. Note that the 135 

TMR cued versus uncued items did not differ in post-sleep retrieval performance (t(34) = 136 

-1.68; p = 0.102). The TMR effect and the associated neurocognitive processing are not 137 

the main focus of the study and were reported in Liu et al., 2023.  138 

 139 

Fig 1. Experimental paradigm and analytic scheme of memory representational 140 
transformation across sleep. (A) The experimental procedure includes pre-sleep 141 
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learning (i.e., encoding and maintenance), pre-sleep tests, overnight sleep with TMR 142 
cueing during slow-wave sleep, and post-sleep retrieval tests. EEG was recorded 143 
throughout the whole experiment. (B) Within-session RSA examined memory 144 
representations within each of the pre-sleep learning (Pre-Pre similarity) and post-sleep 145 
mental retrieval (Post-Post similarity) sessions; Cross-session RSA examined the 146 
memory representational similarity between these two sessions (Pre-Post similarity). 147 
Both the within-session RSA and cross-session RSA were performed at two different 148 
levels: item-level and category-level. Item-level representations were obtained by 149 
contrasting the within-item similarity versus within-category similarity (WI-minus-WC), 150 
while the category-level representations were obtained by contrasting the within-151 
category similarity versus between-category similarity (WC-minus-BC). We hypothesized 152 
that memory representational transformation would be manifested by the following 153 
indexes: decreased item-level representations, while persistently prominent category-154 
level representations from pre- to post-sleep; and the low cross-session pre-post 155 
similarities. (C) If SWS and REM sleep play complementary roles in memory 156 
representational transformation, then the product of the REM sleep amount by the SWS 157 
amount (SWS*REM) should correlated with memory representational transformation 158 
indexes. Otherwise, if REM sleep and SWS play differential roles, then the REM sleep 159 
amount relative to the SWS amount (REM/SWS), should be correlated with the memory 160 
representational transformation indexes.  161 

 162 

Overnight neural representational transformation for post-sleep remembered items 163 

To understand how memory representation transforms across an overnight sleep while 164 

remaining retrievable, we first examined the neural representations during the pre-sleep 165 

learning session (i.e., including both encoding and maintenance periods) for post-sleep 166 

remembered items. Following previous studies (Lee et al., 2019; Liu et al., 2020; Ritchey 167 

et al., 2013), we performed the RSA on the auditory cue-elicited EEG power patterns to 168 

extract item- and category-level neural representations. These representations capture 169 

fine-grained item-specific information and generalized categorical information, 170 

respectively. For item-level representations, we contrasted the EEG power pattern 171 

similarities between trials of the same pictures (Within-item, WI similarity) versus the 172 

similarity between trials of different pictures from the same category (Within-category, 173 

WC similarity, see Methods). For category-level representations, we contrasted the WC 174 

similarity with the similarity between trials of different pictures from different categories 175 

(Between-category, BC similarity) (Fig. 1B).  176 
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To examine the temporal dynamics of representational transformation, we 177 

computed the similarity values by correlating the EEG power pattern across frequencies 178 

(2-40 Hz) and all clean channels between artifact-free learning trials, in 500 ms sliding 179 

time windows with a stride of 100 ms during the 5 s post-stimuli epoch. We found 180 

significant item-level representations (i.e., WI > WC similarity) within a ~700-2500 ms 181 

cluster and a ~2000-4000 ms cluster post-stimuli onset (pscluster < 0.032, corrected by 182 

the non-parametric cluster-based permutation test, Fig. 2A). We also found significant 183 

category-level representations (i.e., WC > BC similarity) within a significant cluster (~0-184 

1000ms and 3000-4800ms post stimuli onset, pcluster = 0.043, Fig. 2B). These results 185 

suggested that both item-level and category-level neural representations emerged 186 

during pre-sleep learning session for those post-sleep remembered items.  187 

As a control analysis, we performed the same RSA for post-sleep forgotten items. 188 

The results only revealed two significant clusters showing significant item-level 189 

representations (pscluster < 0.042, Fig. 2C), but no significant category-level 190 

representations (pscluster > 0.690, Fig. 2D) during pre-sleep learning. Comparisons 191 

between post-sleep remembered and forgotten items revealed two clusters showing 192 

Remember < Forget item-level representations (all pscluster < 0.050, see Fig. S1) and 193 

three clusters showing Remember > Forget category-level representations (all pscluster < 194 

0.027, see Fig. S1), may reflect that greater transforming from item-level to semantic 195 

category-level representations during learning predicts better long-term memory (Liu et 196 

al., 2021) .  197 

Next, we examined item- and category-level neural representations during the post-198 

sleep mental retrieval session. For post-sleep remembered items, contrary to the pre-199 

sleep learning session, we did not find significant clusters showing item-level 200 

representations (pcluster > 0.455, Fig. 2E). However, we found significant category-level 201 

representations during ~900-2900 ms time window, pcluster = 0.045, Fig. 2F). Control 202 

analyses on post-sleep forgotten items did not reveal any significant clusters for either 203 

item- or category-level representations (all pscluster > 0.064, Fig. 2G-H). Direct 204 

comparison between remembered vs. forgotten items only revealed a significant cluster 205 
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showing Remember > Forget category-level representations (pcluster = 0.017), but there 206 

was no significant difference for item-level representations (pcluster > 0.233, see Fig. S1).  207 

 208 

Fig 2. Neural representations within pre-sleep learning and post-sleep mental 209 
retrieval sessions, respectively. (A-B) During the pre-sleep learning session, 210 
significant item-level representations and category-level representations were identified 211 
for post-sleep remembered items in the clusters. (C-D) For post-sleep forgotten items, 212 
item-level but not category-level representations were identified during the pre-sleep 213 
learning session. (E-F) During the post-sleep mental retrieval session, no item-level 214 
representations but significant category-level representations were identified for post-215 
sleep remembered items in the cluster. (G-H) For post-sleep forgotten items, neither 216 
item-level representations nor category-level representations were identified during the 217 
post-sleep mental retrieval session. Significant clusters with pcluster < 0.05 were circled by 218 
black lines. 219 

 220 

We next performed the cross-session RSA to examine the representational 221 

similarity between pre-sleep learning and post-sleep mental retrieval sessions (i.e., Pre-222 

Post Similarity, Fig. 1B). In line while extending previous study (Liu et al., 2021), we did 223 

not find any significant Pre-Post representational similarities on either item-level (i.e., WI 224 

vs. WC) or category-level (i.e., WC vs. BC) for post-sleep remembered items (all 225 

pscluster > 0.487, Fig. 3A). However, post-sleep remembered items showed greater Pre-226 
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Post WI and WC similarity than forgotten items (all pscluster < 0.049, see Fig. S2). These 227 

results suggested that while successful memory retrieval leads to greater cross-session 228 

neural pattern similarity than forgotten items, there were no discernible item-level or 229 

category-level representations preserved from pre- to post-sleep session. 230 

The absence of the cross-session, item-/category-level memory representational 231 

similarity could reflect either weakened or changed neural representational patterns 232 

across sleep. Previous studies suggested that memory representational pattern changes 233 

entailed greater within-session representational similarities than cross-session 234 

representational similarities (Liu et al., 2021; Spaak et al., 2017; Stokes, 2015; Xiao et 235 

al., 2017). We thus compared within-session similarities (Pre-Pre and Post-Post 236 

similarity) with cross-session Pre-Post similarity at the item-level and category-level, 237 

respectively. To enable direct comparisons, we averaged the Pre-Pre (see Fig. 2) and 238 

Pre-Post similarity (see Figure 3 A) within each pre-sleep learning time window and then 239 

contrasted them across pre-sleep learning time windows (see Methods). Similarly, we 240 

contrasted Post-Post similarity with Pre-Post similarity across post-sleep retrieval time 241 

windows. The results revealed a significant cluster showing greater item-level Pre-Pre 242 

similarity than the Pre-Post similarity (pcluster = 0.013, Fig. 3B), while no significant 243 

difference between item-level Post-Post and Pre-Post similarity (p > 0.275, Fig. 3C), 244 

which may reflect decayed item-level representations. In addition, for the category-level 245 

representations, we found significant clusters indicating that both within-session 246 

similarities (i.e., Pre-Pre and Post-Post) were significantly greater than the cross-session 247 

Pre-Post representational similarity (Pre-Pre > Pre-Post clusters: pscluster < 0.027; Post-248 

Post > Pre-Post clusters: pscluster < 0.032; Fig. 3D-E, see also Fig. S3). These results 249 

suggested that despite significant category-level memory representations within both 250 

pre-sleep learning and post-sleep retrieval sessions, they were transformed into distinct 251 

formats after an overnight sleep.  252 

To rule out the possibility that pre-sleep testing (on half of word-picture pairs) 253 

following pre-sleep learning may influence the overnight memory transformation, we 254 

compared the memory representations between pre-sleep tested items and pre-sleep 255 

untested items. The results revealed that, among post-sleep remembered items, no 256 
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significant difference between tested and untested items was found at either the item-257 

level or category-level during the post-sleep mental retrieval session (all pscluster > 0.152, 258 

see Fig. S4). In addition, no significant difference was found at either the item-level or 259 

category-level Pre-Post similarity (all pscluster > 0.340, see Fig. S4). Similarly, we 260 

compared the TMR cued versus uncued items to examine the impact of TMR on 261 

memory representations. The results revealed no significant difference at either the 262 

item-level or category-level during post-sleep mental retrieval session (all pscluster > 263 

0.196, see Fig. S5) and no significant difference at either the item-level or category-level 264 

Pre-Post similarity (all pscluster > 0.195, see Fig. S5).  265 

  266 

 267 

Fig 3. Cross-session representational similarities and their contrast with the 268 
within-session representational similarities. (A) No significant item-level (upper 269 
panel) or category-level (lower panel) Pre-Post similarity for post-sleep remembered 270 
items in the cross-session RSA. (B-C) The item-level Pre-Post similarity was lower than 271 
that within the pre-sleep learning session (i.e., Pre-Pre similarity) but not significantly 272 
different from that within the post-sleep retrieval session (i.e., Post-Post similarity). (D-E) 273 
The category-level Pre-Post similarity was lower than both the category-level Pre-Pre 274 
similarity and Post-Post similarity. Significant clusters were indicated by the shaded 275 
rectangles. *: pcluster < 0.05. 276 
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 277 

REM/SWS, but not SWS*REM, is associated with memory representational 278 

transformation for remembered items 279 

We next investigated how SWS and REM sleep influence representational 280 

transformation. To answer this question, we first scored the sleep EEG using the 281 

toolbox, Yet Another Spindle Algorithm (YASA, Vallat & Walker, 2021), the results of 282 

which were further verified by an experienced sleep researcher (see Methods; See 283 

Table 1, Fig. S6 for sleep staging). One participant with disconnected EEG recordings 284 

during sleep was excluded, resulting in 34 participants in the following data analysis.  285 

We hypothesize that if SWS and REM sleep play complementary roles in memory 286 

representational transformation, then the production of SWS% (i.e., percentage in total 287 

sleep time) and REM% (SWS*REM) would be associated with memory transformation 288 

indexes, i.e., reduced item-level representational strength and the relatively persistent 289 

category-level representational strength, and the low Pre-Post similarity for item-level 290 

and/or category-level representations. In contrast, if SWS and REM sleep play 291 

differential roles in memory transformation, then the REM% relative to the SWS% (i.e., 292 

REM/SWS) should be associated with memory representational transformation indexes.  293 

To test these hypotheses, we computed overnight item-level (or category-level) 294 

representational strength change by subtracting the mean strength of Pre-Pre item-level 295 

(or category-level) representational similarity from Post-Post item-level (or category-296 

level) representational similarity for each participant (i.e., Post minus Pre). We then 297 

performed the correlation analysis between SWS*REM and representational strength 298 

change across all participants (see Fig. 1C). The results revealed no significant clusters 299 

correlating SWS*REM with either item-level strength change or with the category-level 300 

strength change (all pscluster > 0.220, corrected by the non-parametric cluster-based 301 

permutation test, Fig. 4A-B). In addition, no significant clusters were found correlating 302 

SWS*REM with either item-level Pre-Post similarity or category-level Pre-Post similarity 303 

(all pscluster > 0.140, Fig. 4C-D). 304 
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For REM/SWS, we found a significant cluster showing the REM/SWS was 305 

negatively correlated with the item-level representational strength change (pcluster = 306 

0.028, within the cluster: β = -0.022, adjusted R2 = 0.196, p = 0.005, Fig. 4E-F). In 307 

contrast, the REM/SWS was significantly positively correlated with the category-level 308 

representational strength change (pcluster = 0.021, within the cluster: β = 0.014, adjusted 309 

R2 = 0.126, p = 0.022, Fig. 4G-H). In addition, the results revealed a significant cluster 310 

showing that REM/SWS was negatively associated with the item-level Pre-Post cross-311 

sleep similarity (pcluster = 0.008, within the cluster: β = -0.014, adjusted R2 = 0.276, p < 312 

0.001, Fig. 4I-J), while no significant clusters were observed between REM/SWS and 313 

category-level Pre-Post similarity (pscluster > 0.202, Fig. 4K). However, when correlating 314 

the memory representational transformation indexes with REM% and with SWS% 315 

respectively, we only found a significant cluster showing a negative correlation between 316 

item-level Pre-Post similarity and REM% (see Fig. S7), with the explained 25.2% of 317 

inter-participant variance lower than the REM/SWS (27.6%). Control analysis between 318 

REM/SWS and memory representational transformation indexes among post-sleep 319 

forgotten items revealed no significant results (all pscluster > 0.282, see Fig. S8). 320 

These results collectively suggest that SWS and REM sleep play differential roles, 321 

instead of complementary roles, in memory representational transformation among post-322 

sleep remembered items. The greater amount of REM sleep, in contrast to SWS, is 323 

associated with significant memory representational transformation across participants, 324 

as indexed by the reduced item-level representational strength and enhanced category-325 

level representational strength, alongside the reduced item-level cross-session 326 

representational similarity. 327 

  328 
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 329 

Fig 4. The interactive functional roles of SWS and REM sleep in memory 330 
representational transformation. (A-B) SWS*REM showed no significant correlation 331 
with either item-level or category-level representational strength change (Post minus 332 
Pre). (C-D) SWS*REM showed no significant correlation with Pre-Post item-level or 333 
category-level representation. (E-F) REM/SWS was negatively associated with item-334 
level representational strength change. (G-H) REM/SWS was positively correlated with 335 
category-level representational strength change. (I-J) REM/SWS was negatively 336 
correlated with item-level Pre-Post similarity. (K) No significant clusters were found 337 
between category-level Pre-Post similarity and REM/SWS. Significant clusters with 338 
pcluster < 0.05 were circled by black lines. ***: p < 0.001; **: p < 0.01; *: p < 0.05. 339 

 340 

REM and SWS EEG power are differentially associated with the neural 341 

representational transformation for remembered items 342 

Beyond the REM and SWS duration, we next investigated what electrophysiological 343 

activities during REM sleep and SWS modulate this transformation. Prior studies have 344 
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suggested that during REM sleep, frontal theta and beta activities contribute to memory 345 

consolidation (Harrington et al., 2021; Nishida et al., 2009; Vijayan et al., 2017). Building 346 

on these results, we calculated the frontal (F3/4 electrodes) theta (4-7 Hz) and beta (15-347 

25 Hz) power relative to the 1-40 Hz total EEG power (see Methods) across all REM 348 

sleep epochs. To better examine the effect of REM sleep power across entire overnight 349 

sleep on memory representational transformation indexes identified in Fig. 4, we created 350 

a comprehensive index of REM sleep power. Specifically, we multiplied the relative 351 

power in each frequency band by REM duration, resulting in the total power of each 352 

frequency band for REM sleep. The robust linear regression revealed that the total theta 353 

power during REM sleep was negatively correlated with item-level representational 354 

strength change within the cluster as shown in Fig. 4E (β = -29.324, adjusted R2 = 355 

0.142, p = 0.016, Fig. 5A), while positively correlated with category-level 356 

representational strength change within the cluster as shown in Fig. 4G (β = 21.600, 357 

adjusted R2 = 0.134, p = 0.019, Fig. 5B). In addition, the total theta power during REM 358 

sleep was negatively correlated with item-level Pre-Post similarity within the cluster as 359 

shown in Fig. 4I (β = -13.693, adjusted R2 = 0.109, p = 0.032, Fig. 5C). Similarly, total 360 

beta band power during REM sleep was negatively correlated with item-level 361 

representational strength change (β = -197.000, adjusted R2 = 0.168, p = 0.009, Fig. 362 

5D), with a positive but non-significant trend with category-level representational 363 

strength change (β = 101.700, adjusted R2 = 0.044, p = 0.122, Fig. 5E). In addition, the 364 

total beta band power during REM sleep was negatively correlated with item-level Pre-365 

Post similarity (β = -130.23, adjusted R2 = 0.242, p = 0.002, Fig. 5F). Note that similar 366 

results were found when correlating relative REM theta or beta power with these 367 

memory representational transformation indexes (see Fig. S9). Further exploratory 368 

analysis with other frequency bands power (i.e., delta: 1-3 Hz; alpha: 8-12 Hz; sigma: 369 

11-16 Hz) during REM sleep and memory representational transformation indexes did 370 

not yield significant results (all ps > 0.102).  371 

We next examined, during the SWS, how the canonical frontocentral (Fz and Cz 372 

electrodes) 1-4 Hz delta and 11-16 Hz spindle-related sigma power were associated 373 

with memory representations transformation indexes. In contrast to REM theta and beta 374 

power, total SWS delta power across the overnight SWS sleep (i.e., delta power * SWS 375 
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amount) was negatively correlated with category-level representational strength change 376 

(β = -5.181, adjusted R2 = 0.095, p = 0.042, Fig. 5H). No significant correlations were 377 

found for item-level representational strength change or for Pre-Post similarities (all ps > 378 

0.195, Fig. 5G, I). In addition, no significant correlation was found between total SWS 379 

sigma band power and all these memory representational indexes (all ps > 0.183). 380 

Besides, relative SWS delta power but not sigma power was negatively correlated with 381 

category-level representational strength change (see Fig. S10).  382 

 383 
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 384 

Fig 5. The relationship between sleep EEG power and memory representational 385 
transformation. (A-C) Overall frontal theta power during REM sleep was negatively 386 
associated with the item-level strength change (post minus pre) and positively 387 
associated with the category-level strength change (post minus pre) and negatively 388 
associated with the item-level Pre-Post similarity. (D-F) Overall frontal beta power during 389 
REM sleep was negatively associated with the item-level strength change and 390 
negatively associated with the item-level Pre-Post similarity. A positive but nonsignificant 391 
trend was found between the beta power and category-level strength change. (G-I) 392 
Overall frontal-central delta power during SWS was negatively correlated with the 393 
category-level strength change. No significant correlation was found between delta 394 
power and item-level strength change and Pre-Post similarity. **: p < 0.01; *: p < 0.05. 395 
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Discussion 396 

Examining neural representations across pre-sleep learning, overnight sleep, and post-397 

sleep retrieval sessions, we demonstrated that memory representations of individual 398 

items were substantially transformed. From pre-sleep learning to post-sleep retrieval, 399 

idiosyncratic item-level representation was abolished while categorical representations 400 

remained prominent. In addition, the Pre-Post cross-session item-level representations 401 

were lower than the Pre-Pre item-level representations, and Pre-Post category-level 402 

representations were lower than both Pre-Pre and Post-Post category-level 403 

representations. Most importantly, we provide compelling evidence that REM and SWS 404 

differentially impact memory representational transformation. Specifically, a greater REM 405 

sleep to SWS ratio was associated with reduced item-level representational strength, 406 

increased category-level representational strength across sleep, and was associated 407 

with reduced cross-sleep item-level representational similarity.   408 

First, our study advances the understanding of overnight memory representational 409 

transformation, extending prior research on neural representational transformation 410 

observed within minutes or a few hours during wakefulness (Cichy et al., 2014; Favila et 411 

al., 2018; Liu et al., 2021; Xiao et al., 2017). Previous research has shown that item-412 

level memory representations are evident during both encoding and retrieval sessions 413 

that occurred within 1-2 hours of wakefulness (Favila et al., 2018). Our findings extend 414 

these studies by showing that, after overnight sleep, item-level memory representations 415 

were no longer significant, while category-level memory representations were 416 

persistently prominent from pre-sleep learning to post-sleep retrieval sessions. Our 417 

results can be well explained by the functional roles of sleep in transforming memory. 418 

Specifically, memory reactivation during the sleep-based consolidation process may 419 

facilitate the abstract of the gist information (e.g., the concept of animal) from individual 420 

items within the same category (e.g., different animal pictures) (Lau et al., 2011; Lewis & 421 

Durrant, 2011). These gist-like semantic category representations were then more likely 422 

to survive the global synaptic downscaling and to be extracted during the post-sleep 423 

wake retrieval (Feld & Born, 2017). Furthermore, we found that cross-session category-424 

level representations were lower than the Pre-Pre and Post-Post category-level 425 
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representations, suggesting distinct category-level representations between these two 426 

sessions (Liu et al., 2021; Spaak et al., 2017; Xue, 2022). These results support the 427 

transformative nature of episodic memory over time (Dudai, 2012; Xue, 2022). In 428 

addition, previous research has shown that, after overnight sleep, cortical neural pattern 429 

similarity between different memory items is enhanced accompanied by increased 430 

hippocampal-cortical network connectivity (Cowan et al., 2020). Further study could 431 

combine the fMRI and sleep EEG to test whether different brain networks were engaged 432 

during sleep-mediated memory representational transformation at the item- and 433 

category-level. 434 

Most critically, our study addressed an under-investigated question: how SWS and 435 

REM sleep contribute to the sleep-based memory transformation (Diekelmann & Born, 436 

2010; Inostroza & Born, 2013; Landmann et al., 2014; MacDonald & Cote, 2021; Payne, 437 

2011). Despite some studies suggesting the interactive functional role of SWS and REM 438 

sleep in memory enhancement (Batterink et al., 2017; Mednick et al., 2003; Stickgold et 439 

al., 2000), most sleep research focused on the relationship between a single sleep stage 440 

(e.g., either SWS or REM) and behavioral changes, leading to mixed results (Cai et al., 441 

2009; Durrant et al., 2015; Hennies et al., 2017; Ketz et al., 2018; Lau et al., 2010; 442 

Pereira et al., 2023; Tamminen et al., 2013). In our study, we systematically examined 443 

the complementary and differential roles of SWS and REM sleep in memory 444 

representational transformation. Our findings provided novel evidence that a greater 445 

amount of REM sleep is associated with greater memory representational 446 

transformation, while a reversed pattern was observed for SWS. These results support 447 

Payne's hypothesis (2011) and sleep reinforcement and refinement hypothesis 448 

(MacDonald & Cote, 2021), both of which emphasize the critical role of REM sleep in 449 

memory representational transformation and the role of SWS in stabilizing memory in its 450 

original format. Note that the differential roles of REM sleep and SWS may also vary 451 

depending on the tasks, such as the emotional memory task (Cairney et al., 2015), rule 452 

abstract task (Pereira & Lewis, 2020), creative problem-solving task (Lewis et al., 2018), 453 

as well as being affected by the amount of information being learned pre-sleep (Feld & 454 

Born, 2017), which warrants future research. 455 
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Regarding the electrophysiological mechanisms, our results showed that both the 456 

REM sleep duration and REM sleep theta and beta power contribute to memory 457 

representational transformation. Corroborating our findings, previous research showed 458 

that both REM sleep duration and REM sleep EEG theta power were positively 459 

correlated with the consolidation of schema-conformant memory items (Durrant et al., 460 

2015). In addition, REM sleep amount was positively associated with facilitated semantic 461 

processing (Carr & Nielsen, 2015; Stickgold et al., 1999). Together with these studies, 462 

our results suggested that REM sleep facilitates memory reorganization within pre-463 

existing semantic networks or schema. Therefore, it results in more gist-like memory 464 

representations which may resist interference (Payne, 2011; Tamaki et al., 2020). Our 465 

findings also align well with animal studies, which emphasize the REM sleep theta 466 

oscillation in memory consolidation. Specifically, the coherence of amygdalocortical 467 

theta oscillations during REM sleep predicts the behavioral changes in fear-conditioned 468 

cued memory recall (Popa et al., 2010). Selectively suppressing the theta oscillation 469 

during REM sleep leads to impaired fear-conditioned contextual memory. In addition to 470 

the theta oscillation, a recent human intracranial EEG study has observed beta 471 

oscillations during REM sleep (Vijayan et al., 2017), which couple with theta activity 472 

(Cox et al., 2019). In line with these studies, our findings showed similar functional roles 473 

of REM sleep theta and beta activities in memory representational transformation.  474 

Notably, sleep-mediated memory representational transformation was specifically 475 

documented among post-sleep remembered items, whereas no such effect was found 476 

among post-sleep forgotten items. Thus, the documented transformation is an adaptive 477 

process supporting long-term memory  (Xue, 2022). Previous studies suggested that 478 

SWS duration as well as the sigma and delta power during SWS were associated with 479 

overall better memory retention, as indicated by behavioral performance changes across 480 

all post-sleep remembered and forgotten items (Holz et al., 2012; Scullin, 2013). 481 

Although we focused on memory representations rather than overall memory 482 

performance, our supplementary analysis did reveal individual differences in the 483 

duration of SWS were positively correlated with better memory retention across all pre-484 

sleep tested items (see Fig. S11).  However, among post-sleep remembered items, we 485 

found the greater delta power during the SWS was associated with lower post-sleep 486 
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category-level representational strength compared to pre-sleep. While the active 487 

systems consolidation model proposes that memory representations are repeatedly 488 

reactivated during SWS, possibly facilitating the memory transformation into more gist-489 

like representations (Born & Wilhelm, 2012), our study suggests that this SWS-mediated 490 

process alone may not necessarily facilitate the gist-like representational formation.  491 

While participants were capable of retrieving the individual pictures associated with 492 

their corresponding auditory cues in the post-sleep written report, we did not find 493 

significant item-level neural representations during post-sleep mental retrieval for 494 

remembered items. Diminished item-level memory representations could be due to 495 

global synaptic down-scaling during sleep (Tononi & Cirelli, 2014). As a result, these 496 

neural representations may be less likely to be detected using scalp EEG. In addition, 497 

the current study included TMR during the SWS (Liu et al., 2023). However, the 498 

functional roles of SWS and REM sleep in modulating memory representational 499 

transformation are unlikely to be driven by TMR, given the non-significant cued vs. 500 

uncued differences at item-/category-level representations from both the Post-Post and 501 

the Pre-Post RSA (see Fig. S5). Nevertheless, we acknowledge that our study cannot 502 

rule out the possibility that TMR that occurs during SWS may trigger memory 503 

representations into labile states which allows memory representations to be 504 

transformed during subsequent REM sleep (Batterink et al., 2017; Tamminen et al., 505 

2017). Future studies should further examine the interactive functional roles of REM and 506 

SWS in memory representational transformation during spontaneous overnight sleep.  507 

Overall, our study demonstrates overnight memory transformation: while memory 508 

representations containing both item- and category-level representations during pre-509 

sleep learning, only category-level representations were dominant post-sleep. More 510 

importantly, REM sleep and SWS played differential roles in the representational 511 

transformation: the greater amount of REM sleep, relative to the SWS, was associated 512 

with greater memory representational transformation. These findings advance our 513 

understanding of the interactive functional roles of human SWS and REM sleep in 514 

memory consolidation and transformation. 515 

 516 
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Methods 517 

Participants 518 

Thirty-five healthy, right-handed participants were included in the study (females, mean 519 

age ± SD: 22 ± 2.79 years). Two additional participants who exhibited significant body 520 

movements during pre-sleep learning/ post-sleep mental retrieval sessions were 521 

excluded during initial data visual inspection and screening. Behavioral and wakefulness 522 

EEG data analysis were performed on all the 35 included participants. However, for the 523 

sleep EEG data analysis, one participant was excluded due to disconnected EEG 524 

recordings in the middle of overnight sleep, resulting in a final sample size of 34 525 

participants in sleep analyses. Prior to participation, all participants underwent pre-526 

screening for sleep quality using the Pittsburgh Sleep Quality Index (PSQI) and the 527 

Insomnia Severity Index (ISI), ensuring overall good sleep quality. They had not taken 528 

any sleep-aid medicines in the past month prior to the experiment. All participants were 529 

not diagnosed with any neurological or psychiatric disorders and had normal or 530 

corrected-to-normal vision. The study was approved by the Research Ethics Committee 531 

of the University of Hong Kong. All participants gave written informed consent prior to 532 

participation.  533 

Experimental design 534 

The experiment encompassed three primary sessions: (1) a pre-sleep session, including 535 

a word-picture associative learning task and pre-sleep memory tests, (2) an overnight 536 

sleep session with targeted memory reactivation (TMR) administered during NREM 537 

sleep for the initial 3-4 sleeping hours, and (3) a post-sleep session, including a post-538 

sleep mental retrieval task and memory tests. All the behavioral tasks were administered 539 

using PsychoPy (version: 2020.2.10; https://www.psychopy.org/). 540 

During the pre-sleep word-picture associative learning task, participants were instructed 541 

to memorize a total of 96 distinct word-picture pairs. The 96 words were two-character 542 

Chinese verbs, while the corresponding pictures were naturalistic images. Each picture 543 

fell into one of four categories, namely animals, electronic devices, plants, and 544 

transportation tools, with 24 pictures in each category. Each word was randomly paired 545 
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with a picture for each participant. Each learning trial consisted of three phases: 546 

encoding, maintenance, and vividness rating. During encoding, participants were 547 

presented with a fixation cross for 0.3 s, followed by a black screen with jittering 548 

durations between 0.9 to 1.5 s. Subsequently, a picture was displayed at the center of 549 

the screen for 2 s, accompanied by the auditory presentation of the corresponding 550 

spoken verb. Participants were explicitly instructed to focus their attention on the picture 551 

and memorize the associations between the verbs and the pictures. In the immediately 552 

following maintenance period, the presented picture disappeared, and participants were 553 

instructed to vividly mentally maintain the picture for a duration of 3 s while hearing the 554 

spoken verb again. In the vividness rating phase, participants were required to evaluate 555 

the subjective vividness of the mental image they held during the maintenance period on 556 

a scale from 1 (not vivid at all) to 4 (very vivid) within 2 s. The entire pre-sleep learning 557 

task consisted of three blocks, with each block consisting of 32 distinct verb-picture pairs 558 

and each pair repeated three times within a block. To minimize the potential influence of 559 

the recency effect, participants engaged in a ~5-minute math task immediately after 560 

completing the learning task. 561 

After the distractor math task and a short break (~5 minutes), half of the pairs (i.e., 48 562 

pairs) were tested via the cued category-report task and the cued recognition task pre-563 

sleep. In the cued category-report task, each trial started with a 0.3 s fixation, followed 564 

by a blank screen (0.9-1.5 s). The spoken verb was played, prompting participants to 565 

report whether they “remember” or “forget” the corresponding picture. This stage was 566 

self-paced so that participants had enough time to recall. Following the "remember" or 567 

"forget" response, participants were asked to report the category of the picture by 568 

pressing one of four buttons, with each button representing one of the four categories. In 569 

the cued recognition task, the same half of the pairs were tested. Each recognition trial 570 

began with a fixation (0.3 s) and was followed by a blank screen (0.9-1.5 s). Participants 571 

were then presented with the picture (either a pre-learned picture or a similar lure 572 

picture) in the center of the screen while simultaneously hearing the corresponding 573 

spoken verb. They were asked to indicate if the picture was the same picture paired with 574 

the verb during the previous learning task by pressing the “Yes” or “No” button. After the 575 

pre-sleep test, participants went to sleep from approximately 12 am to 8 am. Targeted 576 
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memory reactivation cueing was delivered during SWS in the first 3-4 hours after 577 

participants fell asleep (see Liu et al., 2023 for more details).  578 

Approximately 30 minutes after awakening in next morning, participants were tested on 579 

all 96 pairs. The post-sleep test included the same cued recall and cued recognition 580 

tasks, with an additional mental retrieval task in between. The mental retrieval task was 581 

particularly designed to examine the neural representations during the post-sleep 582 

retrieval task. Specifically, participants were asked to keep their eyes closed throughout 583 

the entire testing block, during which they were asked to mentally retrieve the 584 

associated picture as vividly as possible while hearing the auditory verbs, without any 585 

explicit behavioral responses. These auditory verbs were randomly played via the 586 

speaker with an interstimulus interval (ISI) of 5 ± 0.2 s, comparable to the trial length 587 

during pre-sleep learning. Each auditory cue was repeated three times. After the 588 

completion of the mental retrieval task, participants were provided with a printed form 589 

containing all the cue verbs presented during the mental retrieval task. They were then 590 

asked to write down the specific content they retrieved during the mental retrieval task 591 

for each cue verb. We then code the participants’ retrieval performance as follows: if the 592 

written content accurately represented the central elements of the corresponding 593 

picture, it was labeled as "remember"; if the written content described was incorrect or 594 

left blank, it was labeled as "forget". TMR cued and uncued items (t(34) = -1.68; p = 595 

0.102) showed no significant difference in the post-sleep retrieval performance, we 596 

thereby performed all the analyses after combining cued and uncued items in individual 597 

participants.  598 

EEG recording and preprocessing 599 

EEG data were continuously collected from pre-sleep learning to post-sleep tests, 600 

including the overnight sleep, using the amplifier from the eego system (ANT neuro, 601 

Netherlands, https://www.ant-neuro.com). Data were sampled at 500 Hz using 64-602 

channel waveguard EEG caps, among which 61 channels were mounted in the 603 

international 10-20 system, while two electrodes were placed on the left and right 604 

mastoids, and one electrode was positioned above the left eye for EOG measurements. 605 

During the sleep EEG recordings, two additional electrodes were placed on both sides 606 
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of the chin to measure the electromyogram (EMG) using a bipolar reference 607 

configuration. Prior to EEG recordings, impedance levels for all channels were 608 

maintained below 20 KΩ. During online EEG recordings, the default reference channel 609 

(CPz) was used. Offline preprocessing of the EEG data was conducted using the 610 

EEGLAB (https://sccn.ucsd.edu/eeglab/) and Fieldtrip (https://www.fieldtriptoolbox.org/) 611 

toolboxes, as well as custom MATLAB code.  612 

Specifically, EEG data were first notch filtered at 50 ± 2 Hz, and then bandpass filtered 613 

between 0.5 and 40 Hz. The continuous EEG data during the pre-sleep learning task 614 

were segmented into epochs spanning from 3000 ms before until 8000 ms after stimulus 615 

onset. This long epoch was used to eliminate the edge effect in the subsequent time-616 

frequency analysis. Our main interesting time windows for the pre-sleep learning data 617 

are from 0 to 5 seconds relative to the stimulus onset. Similarly, for the post-sleep 618 

mental retrieval data, the continuous EEG data were segmented into epochs spanning 619 

from 3000ms before until 8000ms after the auditory word onset, with our interesting time 620 

windows from 0 to 5000ms post auditory word onset. Epochs affected by the muscle 621 

movements were visually inspected and excluded from further analysis. Eye blinks and 622 

movements were corrected using the independent component analysis. Any identified 623 

bad channels were interpolated using spherical interpolation in EEGLAB. Subsequently, 624 

the EEG data were re-referenced to the average of the artifact-free data across all 625 

channels. For both the pre-sleep learning and the post-sleep retrieval data, EEG epochs 626 

were categorized into post-sleep remembered or forgotten trials based on the accuracy 627 

of the written reporting immediately following the post-sleep mental retrieval.  628 

Sleep scoring 629 

Sleep scoring was conducted on non-overlapping 30-second epochs using the Yet 630 

Another Spindle Algorithm (YASA), an open-source, machine learning-based toolbox 631 

known for its high performance in sleep analysis (Vallat & Walker, 2021). Prior to sleep 632 

scoring, bad channels in the EEG data were marked and interpolated. To align with the 633 

recommendations of the YASA toolbox, EEG data were re-referenced to FPz. For sleep 634 

scoring, the C4 electrode, as well as the EOG and EMG channels, were used as inputs 635 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606592doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606592


26 
 

to the YASA algorithm. The scoring results were then double-checked and corrected by 636 

an experienced sleep researcher to ensure accuracy and reliability. 637 

Time-frequency analysis 638 

For both the pre-sleep learning and post-sleep mental retrieval stages, the epoched 639 

EEG data underwent time-frequency analysis using complex Morlet wavelets (six 640 

cycles). The frequency range of interest was from 2 to 40 Hz, with a step size of 1 Hz. 641 

The time window of interest was from -1 to 5 seconds relative to the stimulus onset. To 642 

obtain the spectral power, the magnitudes of the complex wavelet transform were 643 

squared. The power data were then normalized by subtracting the mean power in the 644 

baseline time windows and then dividing by its mean power within each frequency bin 645 

and each channel. For both the pre-sleep learning and post-sleep mental retrieval EEG 646 

data, the baseline time window was defined as -0.7 to -0.4 seconds relative to the 647 

stimulus onset. All spectral power data were subsequently downsampled to 100 Hz and 648 

re-segmented into 5-second epochs, specifically [0 to 5 s] relative to the stimulus onset. 649 

The spectral power within this broad frequency range [2 to 40 Hz] and epoch duration 650 

were used as features for subsequent representational similarity analyses. 651 

Oscillatory power estimation during SWS and REM sleep 652 

For sleep EEG data, we first epoched the continuous sleep EEG into 30-second epochs. 653 

To separate the oscillatory power from the 1/f power-law effect (i.e., fractal component), 654 

we employed Irregular-Resampling Auto-Spectral Analysis (IRASA, Wen & Liu, 2016)). 655 

Specifically, for each raw sleep epoch data, IRASA first segmented them into ten equally 656 

sized, partially overlapped segments, with each covering 90% of the epoch. It then 657 

computed the power spectral density (PSD) of these segments of the raw data using the 658 

fast Fourier transform (FFT) with the function of a Hanning window. Afterward, it 659 

irregularly resamples each segment by factors of h (ranging from 1.1 to 1.9 in 660 

increments of 0.05) and 1/h. It uses cubic spline interpolation for irregular upsampling 661 

and anti-aliasing low-pass filtering followed by cubic spline interpolation for irregular 662 

downsampling. Then the PSD of the resampled data was computed using the same 663 

FFT. It then calculated the geometric mean of the auto-power spectra for each h value 664 

across upsampled and downsampled signals for each segment. The median of the 665 
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power spectral with all h-values for each frequency was obtained to estimate the power 666 

spectrum of the 1/f power-law effect (i.e., fractal component). We then average the 667 

estimated power spectrum of the fractal component and the original signal's power 668 

spectrum across all time segments for each sleep EEG epoch. The oscillatory power of 669 

the PSD for individual epochs was then estimated by subtracting the average power 670 

spectrum of the fractal component from the PSD of the raw data. Oscillatory power 671 

between 1 to 40 Hz for SWS and for REM sleep was obtained by averaging the 672 

oscillatory component across epochs labeled as ‘N3’ (SWS) and ‘REM’, respectively. 673 

Canonical sleep oscillations were defined as follows: delta band (1-3 Hz), theta band (4-674 

7 Hz), sigma band (11-16 Hz), and beta band (15-25 Hz). For REM sleep, frontal theta 675 

and beta band power were calculated by averaging the oscillatory power from F3 and F4 676 

channels (Marquis et al., 2017; Nishida et al., 2009; ten Brink et al., 2023). For SWS, 677 

delta and sigma band power were calculated by averaging the oscillatory power from Fz 678 

and Cz channels (Mander et al., 2015; Marshall et al., 2003). 679 

Representational similarity analysis (RSA) 680 

To analyze the neural representations over time, the RSA was performed between the 681 

artifact-free trials by correlating the spectral power across frequencies (i.e., 2-40 Hz) and 682 

across all scalp channels in sliding time windows. For both the pre-sleep learning and 683 

post-sleep retrieval sessions, the length of sliding time windows was 500 ms, with an 684 

incremental step size of 100 ms. To increase the signal-to-noise ratio, the spectral 685 

power was averaged across time points within each time window, as in previous studies 686 

(Liu et al., 2021). This resulted in a set of features consisting of 39 (frequency) by 61 687 

(channel) values for each time window. Then, for each time window, we calculated the 688 

similarity between vectorized features of every two trials that were using Spearman’s 689 

corrections. All the correlation values were Fisher Z-transformed before further statistical 690 

analysis. 691 

We categorized representational similarity values into three types: within-item (WI) 692 

similarity, within-category (WC) similarity, and between-category (BC) similarity. These 693 

categories were based on the corresponding pictures used in the trial pairs for 694 

calculating similarity values. WI similarity refers to the similarity between two trials that 695 
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share the same pictures. WC similarity refers to the similarity between two trials that 696 

involve different pictures from the same category. BC similarity refers to the similarity 697 

between two trials that involve pictures from different categories. Comparing WI 698 

similarity to WC similarity enables us to examine the item-level neural representations 699 

while comparing WC similarity to BC similarity enables us to examine the category-level 700 

representations (Lee et al., 2019; Ritchey et al., 2013). 701 

The representational similarity was computed either across repetitions within each task 702 

session (i.e., within-session RSA) or between two different sessions (i.e., cross-session 703 

RSA). Within the pre-sleep learning session, RSA was conducted on distinct learning 704 

trials, yielding the Pre-Pre similarity (see Fig. 1). Within the post-sleep mental retrieval 705 

session, the RSA was performed between different post-sleep mental retrieval trials, 706 

resulting in the Post-Post similarity. Cross-session RSA was conducted between trial 707 

pairs, with one trial originating from the pre-sleep learning session and the other from 708 

the post-sleep retrieval session. This analysis yielded the Pre-Post similarity. Given that 709 

both within-session RSA and cross-session RSA allowed us to compute WI, WC, and 710 

BC similarities, we could examine item-level and category-level representations for Pre-711 

Pre similarity, Post-Post similarity and Pre-Post similarity. 712 

To enable the comparisons of the within-session representational similarity with cross-713 

session representational similarity, we compared the Pre-Pre similarity versus Pre-Post 714 

similarity across pre-sleep learning time windows and compared the Post-Post similarity 715 

versus Pre-Post similarity across post-sleep mental retrieval time windows. Specifically, 716 

for a Pre-Pre two-dimensional similarity matrix 𝐶 (either item-level or category-level 717 

representations, see Fig. 2), we first averaged the matrix along its first dimension 𝑗, 718 

resulting in the averaged similarity values for each pre-sleep learning time window in the 719 

second dimension 𝑖: 720 

𝐶௜̅ =
1

𝑁
෍ 𝐶௜௝

ே

௝ୀଵ
 721 

Similarly, we averaged the similarity matrix 𝐶 along the second dimension 𝑖, resulting in 722 

the averaged similarity values in the first dimension 𝑗: 723 
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𝐶௝̅ =
1

𝑁
෍ 𝐶௜௝

ே

௜ୀଵ
 724 

We then obtained the Pre-Pre similarity values for individual pre-sleep learning time 725 

windows by further averaging the 𝐶௜̅ and 𝐶௝̅. For the Post-Post similarity, we used the 726 

same computation to obtain the item-level and category-level similarity values for 727 

individual post-sleep retrieval time windows. For the Pre-Post similarity matrix, we 728 

averaged it within each pre-sleep learning time window, enabling us to compare it with 729 

the Pre-Pre similarity across pre-sleep learning time windows. We averaged the Pre-730 

Post similarity matrix within each post-sleep retrieval time window, enabling us to 731 

compare it with the Post-Post similarity across post-sleep retrieval time windows.  732 

For the statistical analysis of representational similarity values across consecutive time 733 

windows, multiple comparison corrections were applied using cluster-based 734 

nonparametric tests in MATLAB (Maris & Oostenveld, 2007). Specifically, we first 735 

conducted statistical tests, such as paired t-tests, between conditions (e.g., WI vs. WC 736 

or WC vs. BC) within individual time windows. Adjacent time points with significant 737 

statistical values (p < 0.05) were grouped to form clusters, and cluster-level statistics 738 

were calculated by summing t-values within clusters. To determine cluster significance, 739 

a null distribution of cluster-level statistics was generated by randomly permuting 740 

condition labels 1000 times. For each permutation, the maximum cluster-level statistic 741 

was identified. In cases where no significant cluster was observed in a permutation, a 742 

value of 0 was assigned. The proportion of cluster-level statistics in the null distribution 743 

exceeding the empirical cluster-level statistic determined nonparametric significance. 744 

Correlation analysis between REM/SWS (or SWS*REM) and representational 745 

transformation indexes 746 

We obtained the REM/SWS by dividing the REM amount (i.e., the percentage of REM 747 

sleep in total sleep time) by the SWS amount (i.e., the percentage of SWS in total sleep 748 

time). Similarly, the SWS*REM was obtained by multiplying the SWS amount by the 749 

REM sleep amount. There are four pre-defined representational transformation indexes 750 

in the study: item-level representational strength change (post minus pre), category-level 751 

representational strength change (post minus pre), item-level Pre-Post similarity, and 752 
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category-level Pre-Post similarity. To calculate item-level and category-level 753 

representational strength changes, we first obtained averaged Pre-Pre similarity 754 

matrices across trial pairs for each participant during pre-sleep learning, separately for 755 

item-level and category-level representations. Each similarity matrix was then further 756 

averaged across all 5-second time windows, resulting in a mean value representing 757 

either the pre-sleep item-level or the category-level representational strength for each 758 

participant. For each participant, we also obtained averaged item-level and category-759 

level Post-Post similarity matrices across trial pairs. The mean strength of the pre-sleep 760 

item-level or category-level representational similarity was then subtracted from the 761 

corresponding Post-Post similarity matrices, resulting in item-level and category-level 762 

representational strength change matrices. For each time window, we computed 763 

Spearman’s correlations between representational strength changes and REM/SWS (or 764 

SWS*REM) across participants (see Fig. 1C). Similarly, for each window of the Pre-Post 765 

similarity matrices, we performed the Spearman’s correlation between the item-level (or 766 

category-level) similarity values with the REM/SWS (or SWS*REM) across participants. 767 

These analyses resulted in correlation coefficient matrices, which were then Fisher Z-768 

transformed. The correlation analysis across time windows was corrected for using 769 

cluster-based nonparametric tests as mentioned above. Briefly, the empirical cluster-770 

level statistics were obtained by summing the transformed correlation coefficients across 771 

adjacent time windows with significant correlation (i.e., p < 0.05). The null distribution of 772 

cluster-level statistics was obtained by shuffling the order of participants for REM/SWS 773 

(or SWS*REM) 1000 times while keeping the order of participants for the 774 

representational transformation index matrix unchanged. For each shuffling, the same 775 

correlation analysis was conducted, and the maximum cluster-level statistic was 776 

identified. The nonparametric significance of a cluster was determined by calculating the 777 

proportion of cluster-level statistics in the null distribution exceeding the empirical 778 

cluster-level statistic. 779 
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